Gas Discharge Tubes (GDT)

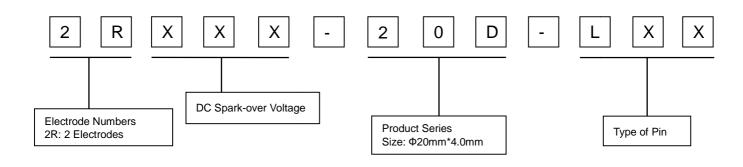
Description

RLILÆN

The Gas Discharge Tube (GDT) is a protective device which is filled with certain proportion of noble gas, or mixed gas or other discharge media in the space between metal electrodes and metalized ceramics, and then sealed at high temperature to form a single gap or multi-gap switch type protective device. When the protected circuit or equipment suffers to surge, GDT will change from high impedance state to low impedance state and release the surge energy to reduce the residual voltage of the circuit, and then protect the equipment or human body from the hazard of transient overvoltage.

2R-20D Series gas discharge tubes enable protection modules to be constructed with protection classes for N-PE applications.

Electrical symbol


Features

- I Stable performance over life
- I Very fast response time
- I High insulation resistance
- I Non-Radioactive

Applications

- I AC power line N-PE application
- I Class I and class II surge protection

Part Number Code

2R-20D Series

RUIL

Gas Discharge Tubes (GDT)

2R-20D Series

Electrical Characteristics

Model		2R350-20D	2R600-20D	2R800-20D	Units
DC Spark-over Voltage ^{1) 2)} at 100V/S		280~420	540~780	640~960	V
Impulse Spark-over Voltage at 1KV/µS		<700	<1000	<1200	V
Front of wave spark-over voltage at 1.2/50 µs, 6 kV		<1000	<1300	<1500	V
Class I (according to IEC 61643-11)					
Maximum continuous operating voltage at 50/60Hz	110	255	255	Vrms	
Nominal impulse discharge current 8/20µs 15 times	<i>I</i> n	30	30	30	KA
Impulse discharge current 10/350µs 5 times	I _{imp}	10	10	10	KA
Follow current at 50/60Hz If		100	100	100	А
Class II (according to IEC 61643-11)					
Maximum continuous operating voltage at 50/60Hz	Uc	110	255	255	Vrms
Nominal impulse discharge current 8/20µs 15 times	<i>I</i> n	30	30	30	KA
Maximum discharge current 8/20µs 2 times /		60	60	60	KA
Follow current at 50/60Hz	100	100	100	А	
AC discharge current (TOV ³⁾ at 1200V) 1 time 50 Hz, 0.2 s	300	300	300	А	
Breakdown time		<100	<100	<100	ns
- typical values		<40	<40	<40	ns
Insulation Resistance at DC 100V		>1	>1	>1	GΩ
Capacitance at 1MHz		<10	<10	<10	pF
Weight		~6.0	~6.0	~6.0	g
Operation and storage temperature	-40~+125	-40~+125	-40~+125	°C	
Climatic category (IEC60068-1)	40/125/21	40/125/21	40/125/21		
Marking, red positive	RUILON 350	RUILON 600	RUILON 800		
Surface treatment	Matte-tin plated				

 $^{\rm 1)}~$ At delivery AQL 0.65 level II, DIN ISO 2859.

²⁾ In ionized mode.

³⁾ TOV - Temporary over voltage.

Gas Discharge Tubes (GDT)

2R-20D Series

HSF

Dimensions (Unit: mm)

2RXXX-20D-LS0

Packaging Information

2RXXX-20D-LS0

	PVC tray	Inner Box	Carton	
Size	265×148×17mm	275×150×50mm	315×290×272mm	
Quantity	MPQ: 1 tray=60pcs	MOQ: 1 Inner Box=3 trays=180pcs	1 Carton=10 Inner boxes=1,800pcs	
Photos			RULEN MARINE BORNARS Worklands	

RUIL

2R-20D Series

Terms and definitions

NO.	Item	Definitions				
1	Gas discharge	Gap, or several gaps, in an enclosed discharge medium, other than air at atmospheric pressure, designed to protect				
	tube(GDT)	apparatus or personnel, or both, from high transient voltages. Also referred to as "gas tube surge arrester".				
2	DC Spark-over Voltage	The voltage at which the gas discharge tube sparks over with slowly increasing d.c. voltage.				
2	Impulse Spark-over	The highest voltage which appears across the terminals of a gas discharge tube in the period between the				
3	Voltage	applications of an impulse of given waveform and the time when current begins to flow.				
4	Impulse discharge current 8/20µs	Current impulse with a nominal virtual front time of 8µs and a nominal time to half-value of 20µs.				
5	Impulse discharge current 10/350µs	Current impulse with a nominal virtual front time of 10µs and a nominal time to half-value of 350µs.				
6	1,2/50 voltage impulse	Voltage impulse with a nominal virtual front time of 1,2µs and a nominal time to half-value of 50µs.				
7	Maximum continuous operating voltage <i>U</i> c	Maximum rms. voltage, which may be continuously applied to the GDT's mode of protection.				
8	Nominal discharge current <i>I</i> n	Crest value of the current through the GDT having a current waveform of 8/20.				
9	Maximum discharge current <i>I</i> _{max}	Crest value of a current through the Surge arrester having an 8/20 waveform and magnitude according to the manufacturers specification. I_{max} is equal to or greater than I_n .				
10	Impulse discharge current for class I test <i>l</i> imp	Crest value of the current through the Surge arrester having a current waveform of 10/350 with specified charge transfer Q and specified energy W/R in the specified time.				
11	Follow current <i>I</i> r	Current supplied by the electrical power system and flowing through the surge arrester after an I_n -discharge current impulse.				
12	Insulation Resistance	Insulation resistance shall be measured from each terminal to every other terminal of the GDT. The test is performed with DC50V when normal spark-over Voltage 70~150V, others with DC100V.				
13	Capacitance	The capacitance shall be measured once at 1 MHz between all terminals unless otherwise specified.				
14	Class I	Surge arrester protects against direct lightning strike. Direct lightning strike is defined as current impulse I_{imp} with waveform 10/350 µs. Withstand capability acc. to IEC 61643-11 standard.				
15	Class II	Surge arrester protects against induced surge current. Induced surge current is defined as current impulse I_n and I_{max} with waveform of shorter duration than I_{imp} , 8/20 µs. Withstand capability acc. to IEC 61643-11 standard.				

Cautions and warnings

- I Surge arresters must not be operated directly in power supply networks.
- I Surge arresters may become hot in case of longer periods of current stress (danger of burning).
- I If the contacts of the surge arresters are defective, current stress can lead to the formation of sparks and loud noises.
- I Surge arresters may be used only within their specified values. In case of overload, the head contacts may fail or the component may be destroyed.
- I Damaged surge arresters must not be re-used.